Ultimaker

Technical data sheet PC

Chemical composition See PC safety data sheet, section 3

Description With Ultimaker PC filament, you can print strong and tough parts that

retain dimensional stability when subjected to temperatures as high as 110 °C. Our PC is engineered to be printed at moderate temperatures compared to other PC filaments and shows minimized warping to provide

a seamless 3D printing experience

Key features High toughness (especially for the non-transparent filament options),

temperature resistance, flame retardant characteristics, dimensionally stable, strong interlayer bonding (especially when using the front enclosure add-on), good bed adhesion (especially when using adhesion

sheets). Allows printing of translucent parts with the transparent filament option

Applications Lighting, molds, engineering parts, tools, functional prototyping, and

short-run manufacturing

Non-suitable for Food contact and in vivo applications. Applications where the printed part

is exposed to temperatures higher than 110 °C

Filament specifications

	Value	Method
Diameter	2.85 ± 0.05 mm	Ultra-fast CCS-based, dual-axis diameter gauge
Max roundness deviation	0.05 mm	Ultra-fast CCS-based, dual-axis diameter gauge
Net filament weight	750 g	-
Filament length	~ 99 m	-

Color information

Color	Color code
PCTransparant	N/A
PC Black	RAL 9005
PC White	RAL 9003

Mechanical properties*

	Injection molding		3D printing		
	Typical value	Test method	Typical value	Test method	
Tensile modulus**	-	-	2,134 MPa (t) 1,904 MPa (b/w)	ISO 527 (1 mm/min)	
Tensile stress at yield	-	-	-	-	
Tensile stress at break	-	-	76.4 MPa (t) 53.7 MPa (b/w)	ISO 527 (50 mm/min)	
Elongation at yield	-	-	-	-	
Elongation at break	-	-	6.4% (t) 5.9% (b/w)	ISO 527 (50 mm/min)	
Flexural strength	-	-	111 MPa (t) 95.5 MPa (b/w)	ISO 178	
Flexural modulus	-	-	2,410 MPa (t) 2,310 MPa (b/w)	ISO 178	
Izod impact strength, notched (at 23 °C)	-	-	4.1 kJ/m² (t) 14.8 kJ/m² (b/w)	ISO 180	
Charpy impact strength (at 23 °C)	-	-	-		
Hardness	-	-	82 (Shore D)(t) 80 (Shore D)(b/w)	Durometer	

Electrical properties*

	Typical value	Test method	Typical value	Test method
Dissipation factor (at 1 MHz)	-	-	0.005 (t) 0.012 (b/w)	ASTM D150-11
Dielectric constant (at 1 MHz)	-	-	2.62 (t) 2.76 (b/w)	ASTM D150-11

Thermal properties

	Typical value	Test method
Melt mass-flow rate (MFR)	32 - 35 g/10 min (t) 23 - 26 g/10 min (b/w)	(300 °C, 1.2 kg)
Heat detection (at 0.455 MPa)	-	-
Heat deflection (at 1.82 MPa)	-	-
Vicat softening temperature		-
Glass transition	112 - 113 °C	DSC, 10 °C/min
Coefficient of thermal expansion	-	-
Melting temperature	-	-
Thermal shrinkage	-	-

^{*}See notes

^{**(}t) Transparent. (b/w) Black and White

Other properties

	Value	Test method
Specific gravity	1.18 - 1.20	ASTM D792
Flame classification	Preliminary tested (see notes)	-

Notes

Properties reported here are average of a typical batch. The 3D printed test specimens were printed in the XY plane, using the normal quality profile in Ultimaker Cura 2.1, an Ultimaker 2+, a 0.4 mm nozzle, 90% infill, 260 °C nozzle temperature, and 110 °C build plate temperature. The values are the average of five transparent, five white, and five black specimens for the tensile, flexural, and impact tests. The Shore hardness D was measured in a 7-mm-thick square printed in the XY plane, using the normal quality profile in Ultimaker Cura 2.5, an Ultimaker 3, a 0.4 mm print core, and 100% infill. The electrical properties were measured on a 54-mm-diameter disk with 3 mm thickness printed in the XY plane, using the fine quality profile (0.1 mm layer height) in Ultimaker Cura 3.2.1, an Ultimaker 3, a 0.4 mm print core, and 100% infill. Ultimaker is constantly working on extending the TDS data.

Ultimaker PC could pass V-2 (UL94) at thickness > 1 mm when printed with 100% infill. Lower infill may lead to reduced flame retardancy performance.

Disclaimer

Any technical information or assistance provided herein is given and accepted at your risk, and neither Ultimaker nor its affiliates make any warranty relating to it or because of it. Neither Ultimaker nor its affiliates shall be responsible for the use of this information, or of any product, method or apparatus mentioned, and you must make your own determination of its suitability and completeness for your own use, for the protection of the environment, and for the health and safety of your employees and purchasers of your products. No warranty is made of the merchantability or fitness of any product; and nothing herein waives any of Ultimaker's conditions of sale. Specifications are subject to change without notice.

Version 4.002

Date November 19, 2018